Cardiomyocyte cell cycle regulation.

نویسندگان

  • Kishore B S Pasumarthi
  • Loren J Field
چکیده

Although rapid progress is being made in many areas of molecular cardiology, issues pertaining to the origins of heart-forming cells, the mechanisms responsible for cardiogenic induction, and the pathways that regulate cardiomyocyte proliferation during embryonic and adult life remain unanswered. In the present study, we review approaches and studies that have shed some light on cardiomyocyte cell cycle regulation. For reference, an initial description of cardiomyogenic induction and morphogenesis is provided, which is followed by a summary of published cell cycle analyses during these stages of cardiac ontology. A review of studies examining cardiomyocyte cell cycle analysis and de novo cardiomyogenic induction in the adult heart is then presented. Finally, studies in which cardiomyocyte cell cycle activity was experimentally manipulated in vitro and in vivo are reviewed. It is hoped that this compilation will serve to stimulate thought and experimentation in this intriguing area of cardiomyocyte cell biology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Revisiting Preadolescent Cardiomyocyte Proliferation in Mice.

Understanding cardiomyocyte cell cycle regulation after birth is key to optimizing regenerative strategies for the heart post injury, yet poses multiple technical challenges, as evidenced by recent studies that have arrived at divergent conclusions. In a recent publication in Cell, Alkass et al undertook multiple approaches to examine cardiomyocyte cell cycle regulation in the first 3 weeks aft...

متن کامل

Expression of mutant p193 and p53 permits cardiomyocyte cell cycle reentry after myocardial infarction in transgenic mice.

Previous studies have demonstrated that expression of p193 and p53 mutants with dominant-interfering activities renders embryonic stem cell-derived cardiomyocytes responsive to the growth promoting activities of the E1A viral oncoproteins. In this study, the effects of p53 and p193 antagonization on cardiomyocyte cell cycle activity in normal and infarcted hearts were examined. Transgenic mice ...

متن کامل

Interplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy

Objective(s):  The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...

متن کامل

Postnatal telomere dysfunction induces cardiomyocyte cell-cycle arrest through p21 activation

The molecular mechanisms that drive mammalian cardiomyocytes out of the cell cycle soon after birth remain largely unknown. Here, we identify telomere dysfunction as a critical physiological signal for cardiomyocyte cell-cycle arrest. We show that telomerase activity and cardiomyocyte telomere length decrease sharply in wild-type mouse hearts after birth, resulting in cardiomyocytes with dysfun...

متن کامل

Cardiomyocyte cell cycle

The adult mammalian heart has a limited capacity for replacing lost tissue following injury. Mammalian cardiomyocytes exit the cell cycle shortly after birth, where they undergo a final round of DNA synthesis, binucleate, and terminally differentiate. In addition, low levels of cardiomyocyte turnover in the aging heart or following injury seem to be mediated mostly by cardiomyocyte division. Al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 90 10  شماره 

صفحات  -

تاریخ انتشار 2002